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In  this paper the slip flow of viscous fluid at  low Reynolds numbers past a flat plate 
aligned with the flow is studied theoretically on the basis of Oseen-Stokes equations 
of motion. An integral equation €or the distribution of fundamental singularities 
representing the plate is derived and solved approximately in the vicinity of the edge 
and main portion of the plate. A formula for the local skin friction is obtained and 
discussed numerically. It is also shown that the slippage of the flow gives rise to 
reduction of the drag force on the plate by an amount O(KllnKI), where K is the 
Knudsen number. The velocity change near the edge of the plate is of particular 
interest and is found to be logarithmically singular there. 

1. Introduction 
It is well known that the flow of a rarefied gas past a solid body exhibits slipping 

at  the body surface. If the rarefaction is slight, the (macroscopic) slip velocity is 
proportional to the shear stress at  the surface according to kinetic theory. The con- 
stant of proportionality is of the order of the mean free path, so that the slip velocity 
is usually small. Thus most work on the slip flow has been restricted to the study of 
small perturbations about no-slip solutions (Donaldson 1949; Schaaf & Chambr6 
1958). The effect of slip is expected however to be large a t  the leading edge of 8 flat 
plate since the shear stress becomes infinite there if the flow does not slip. Flows of 
this sort cannot be studied by simple perturbation analysis. One approach may be to 
use the slip boundary condition with no restriction on the magnitude of the slip 
velocity (though there is no rigorous support from kinetic theory at present). Laur- 
mann (1961) treated, along these lines, incompressible slip flow past a semi-infinite 
flat plate at  zero incidence on the basis of Oseen’s linearized equation of motion. He 
derived, among others, formulae for the local skin-friction coefficient c, at points 
near the leading edge and far downstream. He noticed that boundary-layer theory 
using the slip condition does not predict the nature of the solution at  small Mach 
numbers (or small Reynolds numbers based on the mean free path) correctly, even a t  
the surface of the plate. Laurmann also obtained a formula giving cf at any point 
on the plate for the case of flow at low Reynolds numbers as a particular limit. 
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Unfortunately there seem to be some errors in this formula and related results. The 
case of low-speed flow is of importance since it is in this regime that conclusive com- 
parisons of theory and experiment can be made. Therefore the present paper aims to 
reconsider the case of low Reynolds number flow directly by a different approach 
from Laurmann's. The plate is here supposed to be of finite length. An integral 
equation is derived in $ 2  for the distribution of fundamental solutions of the Oseen- 
Stokes equation, which represents the effect of the plate on otherwise uniform flow 
under the slip condition. In  $ 3 an approximate solution valid in the vicinity of the 
edge of the plate is found by means of the Wiener-Hopf technique. A formula for cf 
is given and discussed numerically. In  $ 4  a perturbation solution for the central 
portion of the plate is also obtained and a uniformly valid solution is constructed by 
a matching procedure. Then the drag force on the plate is calculated and it is shown 
that the slipping of the flow reduces the drag by an amount OfKllnKl), where K is 
the Knudsen number. Approximate expressions for the velocity field near the leading 
edge of the plate are also obtained, revealing a special type singularity there. The 
corresponding result for the trailing edge can be found at once by virtue of flow 
symmetry. 

2. Basic equations 
We consider two-dimensional steady flow of a viscous fluid with uniform velocity 

U at infinity past a flat plate of length I aligned with the flow. The flow is supposed 
to obey the Oseen linearized equation of motion and undergo slipping at the plate 
surface with velocity proportional to the shear stress there. We take Cartesian co- 
ordinates ( x ,  y) normalized by the plate length I in the plane of fluid motion. The 
x axis is taken parallel to the direction of the uniform flow and the plate lies on 
the x axis between x = 0 and x = 1 .  Let 1 +u and v be the x and y components of the 
velocity at  any point normalized by U .  Then the equation of continuity and the 
Oseen equation of motion may be written as 

(1) au/ax  + aqay = 0, 

where o is the vorticity, R = l U / v  the Reynolds number, v the kinematic coefficient 
of viscosity and A = a2/ax2 + a2/ay2. A fundamental solution of these equations which 
represents the asymptotic field far from an obstacle, an Oseenlet (Rosenhead 1963), 
is known to be 

(3) 
- 

u - iv = C(aRreis)-l - exp (a&) {CK,(&Rr) + CK,(*Rr) 

where x+iy  = reis, KO and K ,  are modified Bessel functions and C is an arbitrary 
constant, c being t4e conjugate complex of C. We can express the perturbation 
velocity field in our problem as a suitable distribution of singularities of this type 
along the flat plate as follows: 
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On the other hand, the slip boundary condition a t  the surface of the plate is given by 
kinetic theory in the form: 

I + u  = klau/ayl ( y  = 0, 0 < x < I), (5) 

where the slip coefficient k is a small parameter proportional to the Knudsen number 
K ,  the ratio of the mean free path of a gas molecule to  the length of the plate. Smallness 
of the right-hand side of (5) is assumed in the kinetic theory. However, in the first half 
of the present analysis we use condition ( 5 )  with no restriction on the magnitude of 
the slip velocity as mentioned earlier. Now, it follows from (4) that  

au/ay = + f ( x )  ( y  = + 0,  0 < x < 1) .  (6) 

Introducing (4) and (6) in (5), we obtain an integral equation for the distribution 
functionf(z) of the form 

I n  the case of interest here, i.e. when the Reynolds number R is much smaller than 
unity, the integral equation can be simplified by the kernel approximation: 

1 +‘S,’(In 2 n  Ix - t l  f ( t ) d (  = k f ( x )  (0  < x < l), 

where y = 0.5772 ... is Euler‘s constant. This replacement of the kernel corresponds 
to application of the Stokes approximation to  the fluid motion. I n  fact, convective 
effects can be safely neglected for the flow near the plate a t  small Reynolds numbers. 

The simplified equation (8) is, however, not yet amenable to straightforward 
procedures. We shall try first to find an approximate solution valid near the edge 
of the plate, where the slipping of fluid at the surface becomes conspicuous as remarked 
before. Differentiating (8) with respect to  x ,  we obtain 

where the Cauchy principal value of the integral is taken. I n  order to  get the leading- 
edge solution, we use stretched variables defined as 

t = k - k ,  T = k - l t .  (10) 

Then, since k-’ is very large, (9) may be approximated as fo1lows:t 

80d7-277-  dg = 0 ( t  > 0 ) ,  
dt 

t It is anticipated from the analysis of no-slip flow that the function f(z) behaves like 2-4 
for 1 9 z 9 k. If the co-ordinate stretching (10) is applied to (8) without differentiation, the 
replacement of k-1 by infinity makes the integral divergent, and therefore becomes meaningless. 
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3. Edge solution 

We first rewrite (11)  in a form such that Fourier transformation may be app1ied:t 
The integral equation (1  1) can be solved by means of the Wiener-Hopf technique. 

where 

and h(t) is a function as yet unknown. By making use of the convolution theorem, we 
obtain the Fourier transform of (13)  in the form 

where 

A(p) = lim (1 + &(pz + E')-*} 
h+O 

and the subscripts k indicate regularity of the function in the upper and lower halves 
of the p plane respectively. 

In  order to find GJp) from (15) ,  it is necessary to factorize the function A ( p )  in the 
form 

This can be done by a standard procedure using the Cauchy integral representation 
for In A ( p )  with a deformed contour of integration around the real axis; we then have 

4 2 ) )  = A-(P)/A+(P). (17) 

where the path of integration avoids the point q = p via a small semicircle traversed 
in the clockwise sense. The integral may be simplified: on differentiation with respect 
t o p  and integration by parts, we get 

1 1 - -  I dA- 

n_F - 2p(l+21pl) 

Further integration gives 

- p}, 
. .  

where the constant of integration has been so chosen that lnA-(p) tends to zero as 
[pi becomes infinite, and 

t We replace the kernel of (1  1) as in (13) in order to obtain the existence of the Fourier transform. 
After t,he nature of the solution has been obtained, we can let E -f 0. 
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FIGURE 1. Distribution of shearing stress in the edge region. 
-, present result; ---, no-slip flow. 

in which In29 is taken to be real for positive S. Below, P ( p )  is defined for arbitrary 
p by analytic continuation. Thus A J p )  is given for real p by 

Now, when (15) is rewritten in the form 

iPA-(P) G J P )  = - A+(P) H+(P)/2n, (23) 

we see that the left- and right-hand sides are analytic in the lower and upper halves 
of the p plane respectively. Therefore, both sides represent a single entire function 
which is shown to be a constant A (say) to ensure the existence of Fourier inversion. 
Thus the function G J p )  is found to be 

G J p )  = --iA/PA-(P), (24) 

where A-(p)  is given by (22). Fourier inversion of (24) together with (10) and (12) 
gives the required edge solutionf,(x) of (8) in the form 

This edge solution is valid in the neighbourhood of the leading edge of the plate 
(z < 1) .  The scale factor A is to be determined by the process of matching with the 
solution valid in the central part of the plate (Van Dyke 1964). This matching will 
be considered in the next section. Figure 1 shows nf,(z)/A, which is proportional, 
according to (6), to the local shearing stress at the surface. It will be seen that the 
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shearing stress remains finite a t  the leading edge and becomes smaller downstream. 
The asymptotic behaviour of the edge solution is as fol1ows:t 

(26) 

(27) 

x x  X 
A 1+-ln-+(y-ln2-2)-+ ...I for x < k ,  [ 2nk k 2nk 

7TX 

k x  
A (%)# (1 +zing + (y +In 2 - 1 )  

f e w  - 
Laurmann (1961) treated incompressible slip flow past a semi-infinite flat plate at 

zero incidence on the basis of the Oseen equation. He obtained a formula for the local 
shear stress corresponding to (25)  as the small Reynolds number limit of a general 
case. However, his result does not agree with ours. Therefore we have followed through 
the analysis leading to the above-mentioned limit (Laurmann did not give the details 
of his calculation). Thus, starting from the general results (4.7) and (4.11) of Laurmann, 
introducing t = x/ul h [which is just our t = x/k in (lo)] and making the transforma- 
tion W = 2 p / h  (in Laurmann's notation), we took the limit A -+ 0. This process does 
not lead to Laurmann's equation (5.7) but yields the present equation (25)  except for 
a constant. The constant factors may differ in the cases of a k i t e  and a semi-infinite 
plate respectively. It would be unfortunate if some errors occurred in Laurmann's 
detailed calculations. One sees by comparing Laurmann's figure 4 with our figure 1 
that his formula predicts values of the shear stress which are too large (by 50% or 
more) at and near x/Zk = 1. Also, the related result shown in his figure 5 seems to 
need correction. 

4. Uniformly valid solution and drag formula 
The no-slip boundary condition holds approximately over most of the plate except 

for narrow edge regions. Therefore the main solution f,(x) to the first approximation 
satisfies the integral equation (8) with the right-hand side set to zero. The no-slip 
problem for the flat plate has been already treated by Piercy & Winny (1 933) and the 
solution is 

i 

The scale factor A in the edge solution (25) can be determined by matching it with 
the main solution in the region where 1 B x 3 k. Thus, comparing (27) with (28) for 
small x, we get 

A =  

t To obtain the asymptotic formulae, it is convenient to rewrite (25) in the form 

where the path of integration is deformed around the point p = 0 in the counter-clockwise sense. 
Note that p = - 3 is not a singular point of the integrand. Evaluation of the contributions from 
large and small p to the integral yields (26) and (27) respectively (cf. Carslaw & Jaeger 1947, 
p. 271). 
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Next we consider the solution for the trailing-edge region. It is sufficient for this to 
note that, even under the slip boundary condition ( 5 ) ,  the solution to the Stokes 
approximation is symmetric with respect to the straight line normal to the plate at 
its centre. Accordingly, the trailing-edge solution is also given by (25) but with its 
argument x replaced by 1 - x. 

I n  terms of the edge and main solutions obtained above, we can construct a solution 
uniformly valid over the whole of the plate to the first approximation in the sense of 
additive composition (cf. Van Dyke 1964, p. 94): 

1 1 _--- 
d (1-z)) 

Calculation of the drag experienced by the plate requires integration off@) over its 
surface. By integrating (30), we get (see appendix A) 

The second term on the right-hand side implies a reduction of the drag O(k,  kJlnk]) 
owing to the slip effect in the edge regions of the plate. 

On the other hand, if the perturbation due to the slip in the central part of the plate 
is considered, it may be anticipated that the perturbation makes a contribution to the 
drag of the same order. Therefore it becomes necessary to take the main solution to 
the next approximation. An iteration procedure starting from (28), however, en- 
counters difficulties because of the singularities of (28) at the edges of the plate. We 
therefore start from the uniformly valid solutionfU(x) given by (30) and put 

f ( 4  = f U ( 4  +k4 tf(4 Q fUC.)). (32) 

Substituting (32) into (8) and retaining the terms O(k), we obtain an integral equation 
forj(x) as follows (see appendix B): 

1 --- 
x) (1-x)) 

(33) 

F L M  85 



738 

It is possible to calculate the integral 
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directly from this equation without solving f ( x )  itself. (If necessary the solution can 
be obtained by the Carleman method; see Carrier, Krook & Pearson 1966, p. 428.) 
We multiply (33) by l/[x(l -z)]$ and then integrate with respect to x from zero to 
unity. The result is 

8k ln(2 /k)+y+l  1 -  77 
/ o l f ( x ) d x  + - ~ l n ( l 6 / R ) - y + l (  ln ( l6 /R)-y+l  (34) 

Thus the small perturbation over the main portion of the plate makes a contribution 
to the drag comparable to that arising from the narrow edge regions. 

Taking the conventional definition of the drag coefficient? 

* l a u  dx = 4 1  - f ( x ) d x  
CD = do %I,=, RS, 

and substituting (32) together with (31) and (34), we get 

877 1 - -  4k ln(2 /k)+y+l  
R{ln(16/R)-y+l]( T ln(16/R)-y+l 

(35) 

Here the slip coefficient k is proportional to the Knudsen number K for a slightly 
rarefied gas. Also, there is the well-known relation KR = AS,  where S = U / c ,  is the 
speed ratio, c, being the most probable molecular speed, and A = J$T-* for spherical 
molecules. Therefore k is proportional to SIR and so CD as given by (36) may be 
regarded as a function of R and S. Thus in figure 2, CD is plotted vs. R, by taking simply 
k = K = AS/R. In  the same figure CD's for free molecular flow (K-tco) from kinetic 
theory are also included for comparison. Tamada & Inoue (1976) studied the slip flow 
past an elliptic cylinder by a (regular) perturbation method. They could not discuss, 
however, the case of a flat plate as a limit of their results. The appearance of the k In k 
term above indicates the cause of their difficulties. 

Finally, we present approximate expressions for the velocity field around the 
leading edge of the plate. When the kernel approximation is made in the integral 
equation (8), the velocity field (4) near the plate becomes 

Substituting into these the uniformly valid solution (30) and carrying out some 
reductions (see appdndix C), we obtain the following results (where r = (x2+y2)h, 
O = tan-1 (y/x) and s = r/k): 

1 + u N (kA/2n) (277 + (slns) cos 8 + 2s(77 - 0)  sin8 + (y  - ln2 - 2) s cos O},  (38a) 

2, N (kA/2n)(lns+y-ln2-l)ssinO (38b)  

t C, = D/()pU21), where D is the drag force per unit span of the plate and p is the density of 
the fluid. 
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FIGURE 2. Variation of drag coefficient with Reynolds number. -, 
equation (36); ---, free molecular flow (Co = 2/nlS) .  

for s 6 1 (r  < k) and 

1 + u N [kA/2(2n)4] [st(sin $8 + 5 sin 98) + n-ls-t{(sin $8 + 3 sin +9) Ins 

+ (37 + 3 In 2 + 5 )  sin @}I, (39a) 

+ (sin QO - sin $0) (n - 8) - (y  +In 2 - 1) COB $0 + (y  + In 2 - 1) cos 40}] (39 b )  

for k- l$  s $ 1 (1 9 r 3 k) .  It is seen from (38) that the slip velocity at the leading 
edge takes the value kA = (2nrk)4/{ln(16/R)-y+ l} = O(k*) and the change in 
velocity near the edge is logarithmically singular. In (39), for large s, the first terms 
(O(s4)) correspond to no-slip flow while the second terms represent the additional 
velocity due to slippage, which diminishes as s increases. Here the presence of the 
terms proportional to s-* In s reflects again the singular character of the perturbation 
field. 

+ (cos$O+ 3 cos 48) (n- 8) + (y  1- ln2 - 1) sin Q8 

v - [kA/2(2n)4] [s*( - COB $8 + cos i8) + n - b d ( (  - cos$8 + cos 40) Ins 

Appendix A. Integration of fu(x) 
Integrating (30) from zero to unity, we have 

25-2 
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In order to estimate the integral on the right-hand side, it is convenient to express 
it as the sum of three integrals I,, I, and 131 where 

(A 2a)  

with the path of integration deformed around the pointp = 0 in the counter-clockwise 
sense. Then I, and I, become 

and the asymptotic expansion of I3 for small k is easily obtained in the form (cf. 
Carslaw & Jaeger 1947, p. 271) 

1, = 0, I, = 2(2n/k)*,  (A 3 )  

Thus (A 1), together with (A 3 )  and (A 4), gives the formula (31 ) .  

Appendix B. Integral equation for refinement of main solution 
When (30 )  and (32 )  are substituted into the integral equation (8) it takes the form 

We must estimate the terms on the right-hand side in the central part of the plate, 
where x = O(1) and 1 --x = O(1). We have 

2 1 
fu(x) In (16/R) - y + 1 [x( 1 - x)]S. 

Note that the edge solution fe(x) satisfies the relation 

as is seen from the integration of (1 1 )  with respect to x from unity to x. It foIIows 
from this that 
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Taking into account the asymptotic form (27) of fJx) for x 9 k, we can express the 
right-hand side in the following approximate form: 

On substituting these results together with (31) into (B 1) and retaining the terms 
O ( k ) ,  we obtain the integral equation (33) forf(z). 

Appendix C. Velocity field in the vicinity of the edge 

where (x2 + y2)4 + k, we rewrite (37) on integration by parts in the form 
In  order to get approximate expressions for the velocity components in the region 

u = 277 Ljol 

f - x  - 'sl [ +(,$ - x) In ( ( E -  x ) ~  +y2} - Eln 6 +z +xln ,$ + 214 tan-l- - ~ J y l ]  "d5, 
277 0 lY l  % 

(C la) 
1 

477 
w = - y[f( 1 )  In {( 1 - z)2 + y2} -f(O) In (z2 + y2)1 

df [In ( (6  - x)2 + yz} - 2 In t] -dt. (C 1 b) 
d t  

We estimate these formulae using the uniformly valid solutionf,(x) for f (x) to the first 
approximation. The last two terms in these equations are of higher order than the 
rest for small ( x 2 + y z ) l / k ,  and can be neglected. Taking into consideration that the 
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edge solution f,(z) satisfies (1 1) and that its asymptotic behaviour for small and large 
xlk is given by (26) and (27)) we can derive the following results: 

f%(O) =f,tl) + A ,  (C 2) 

Substitution of these results into (C 1)  leads to the approximate formula (38). By 
integrating (37) by parts in a different way and making some reductions, we can obtain 
the formula (39) valid for 1 3 (x2 +y2)i 3 k. 
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